NE8040-90 Normal grade NF element with high monovalent ion rejection ## SPECIFICATIONS: #### General **Features** Permeate flow ratel. 7,500 GPD (28.4 m3/day) Monovalent ion rejection (NaCl)!: 85.0 - 95.0% Divalent ion rejection (CaCl₂)²: 90.0 - 95.0% 400 ft² (37.2 m²) Effective membrane area: - 1. The stated product performance is based on data taken after 30 minutes of operation at the following monovalent test conditions: - 2,000 mg/L NaCl solution at 75 psig (0.5 MPa) applied pressure - 15% recovery - 77 °F (25 °C) - pH 6.5-7.0 - 2. The stated product performance is based on data taken after 30 minutes of operation at the following divalent test conditions: - 500 mg/L CaCl2 solution at 75 psig (0.5 MPa) applied pressure - 15% recovery - 77 °F (25 °C) - pH 6.5-7.0 - 3. MgSO₄ rejection is 97.0%. (Test conditions are equivalent with NaCl) - 4. Permeate flow rate for each element may vary but will be no more than 15%. - 5. All elements are vacuum sealed in a polyethylene bag containing 1.0% SBS (sodium bisulfite) solution and individually packaged in a cardboard box. Membrane type: Thin-Film Composite Membrane material: Polyamide (PA) Element configuration: Spiral-Wound, FRP Wrapping ### **Dimensions** A = 40.0 inch (1,016 mm) B = 8.0 inch (203 mm) C = 1.12 inch (28 mm) - 1. Each membrane element supplied with one brine seal, one interconnector (coupler) and four o-rings. - 2. All NE8040 elements fit nominal 8.0 inch (203 mm) I.D. pressure vessels. The information provided in this document is solely for informative purposes. It is the user's responsibility to ensure the appropriate usage of this product. Woongjin Chemical assumes no obligation, liability or damages incurred for the misuse of the product or for the information provided in this document. This document does not express or implies any warranty as to the merchantability or fitness of the product. 2012 A 04-03-22-EN # NE8040-90 Normal grade NF element with high monovalent ion rejection | APPLICATION DATA: | | | |--|--|---| | Operating Limits | · Max. Pressure Drop / Element | 15 psi (0.1 MPa) | | | Max. Pressure Drop / 240" Vessel | 60 psi (0.41 Mpa) | | | · Max. Operating Pressure | 600 psi (4.14 MPa) | | | Max. Feed Flow Rate | 75 gpm (17.0 m³/hr | | | Min. Concentrate Flow Rate | 16 gpm (3.6 m³/hr) | | | Max. Operating Temperature | 113 °F (45 °C) | | | Operating pH Range | 2.0-11.0 | | | · CIP pH Range | 1.0-13.0 | | | Max.Turbidity | I.0 NTU | | | · Max. SDI (15 min) | 5.0 | | | Max. Chlorine Concentration | < 0.1 mg/L | | Design Guidelines for Various
Water Sources | Wastewater Conventional (SDI < 5) | 8–12 gfd | | | • Wastewater Pretreated by UF/MF (SDI < 3) | 10-14 gfd | | | Seawater, Open Intake (SDI < 5) | 7-10 gfd | | | Seawater, Beach Well (SDI < 3) | 8–12 gfd | | | · Surface Water (SDI < 5) | 12–16 gfd | | | Surface Water (SDI < 3) | 13–17 gfd | | | · Well water (SDI < 3) | 13–17 gfd | | | · RO permeate (SDI < I) | 21-30 gfd | | Saturation Limits
(Using Antiscalants) [†] | · Langlier Saturation Index (LSI) | <+1.5 | | | Stiff and Davis Saturation Index (SDSI) | <+0.5 | | | · CaSO ₄ | 230% saturation | | | · SrSO ₄ | 800% saturation | | | · BaSO ₄ | 6,000% saturation | | | · SiO ₂ | 100% saturation | | | [†] The above saturation limits are typically accepted by
manufacturers. It is the user's responsibility to ensure
concentration are dosed ahead of the membrane sys
formation anywhere within the membrane system. M
or damaged due to scale formation are not covered | e proper chemical(s) and
tem to prevent scale
embrane elements fouled | #### **GENERAL HANDLING PROCEDURES** - Elements contained in the boxes must be kept dry at room temperature (7–32°C; 40–95°F) and should not be stored in direct sunlight. If the polyethylene bag is damaged, a new preservative solution (sodium bisulfite) must be added and air-tight sealed to prevent drying and biological growth. - Permeate from the first hour of operation should be discarded to flush out the preservative solution. - Elements should be immersed in a preservative solution during storage, shipping and system shutdowns to prevent biological growth and freezing. The standard storage solution contains 1% by weight sodium bisulfite or sodium metabisulfite (food grade). For short term storage (i.e. one week or less) 1% by weight sodium metabisulfite solution is adequate for preventing biological growth. - · Keep elements moist at all times after initial wetting. - Avoid excessive pressure and flow spikes. - Only use chemicals compatible with the membrane elements and components. Use of such chemicals may void the element limited warranty. - Permeate pressure must always be equal or less than the feed/concentrate pressure. Damage caused by permeate back pressure voids the element limited warranty. 2012 A 04-03-22.2-EN # NE8040-70 ### Normal grade NF element with medium monovalent ion rejection ### SPECIFICATIONS: #### General **Features** Permeate flow rate!: 7,000 GPD (26.5 m³/day) Monovalent ion rejection (NaCl)!: 40.0 - 70.0% Divalent ion rejection (CaCl2)2: 45.0 - 70.0%Effective membrane area: 400 ft² (37.2 m²) - 1. The stated product performance is based on data taken after 30 minutes of operation at the following monovalent test conditions: - 2,000 mg/L NaCl solution at 75 psig (0.5 MPa) applied pressure - 15% recovery - 77 °F (25 °C) - pH 6.5-7.0 - 2. The stated product performance is based on data taken after 30 minutes of operation at the following divalent test conditions: - 500 mg/L CaCl2 solution at 75 psig (0.5 MPa) applied pressure - 15% recovery - 77 ∘F (25 °C) - pH 6.5-7.0 - 3. MgSO₄ rejection is 97.0%. (Test conditions are equivalent with NaCl) - 4. Permeate flow rate for each element may vary but will be no more than 15%. - 5. All elements are vacuum sealed in a polyethylene bag containing 1.0% SBS (sodium bisulfite) solution and individually packaged in a cardboard box. Membrane type: Thin-Film Composite Membrane material: Polyamide (PA) Element configuration: Spiral-Wound, FRP Wrapping #### **Dimensions** A = 40.0 inch (1,016 mm) B = 8.0 inch (203 mm) C = 1.12 inch (28 mm) - 1. Each membrane element supplied with one brine seal, one interconnector (coupler) and four o-rings. - 2. All NE8040 elements fit nominal 8.0 inch (203 mm) I.D. pressure vessels. The information provided in this document is solely for informative purposes. It is the user's responsibility to ensure the appropriate usage of this product. Woongjin Chemical assumes no obligation, liability or damages incurred for the misuse of the product or for the information provided in this document. This document does not express or implies any warranty as to the merchantability or fitness of the product. 2012 A 04-03-23-EN # NE8040-70 Normal grade NF element with medium monovalent ion rejection | APPLICATION DATA: | | | |--|--|--| | Operating Limits | · Max. Pressure Drop / Element | 15 psi (0.1 MPa) | | | · Max. Pressure Drop / 240" Vessel | 60 psi (0.41 Mpa) | | | · Max. Operating Pressure | 600 psi (4.14 MPa) | | | Max. Feed Flow Rate | 75 gpm (16.0 m ³ /hr) | | | · Min. Concentrate Flow Rate | 16 gpm (3.6 m³/hr) | | | · Max. Operating Temperature | 113 °F (45 °C) | | | Operating pH Range | 2.0-11.0 | | | · CIP pH Range | 1.0-13.0 | | | · Max.Turbidity | I.0 NTU | | | · Max. SDI (15 min) | 5.0 | | | · Max. Chlorine Concentration | < 0.1 mg/L | | Design Guidelines for Various
Water Sources | · Wastewater Conventional (SDI < 5) | 8–12 gfd | | | • Wastewater Pretreated by UF/MF (SDI < 3) | 10-14 gfd | | | · Seawater, Open Intake (SDI < 5) | 7-10 gfd | | | Seawater, Beach Well (SDI < 3) | 8-12 gfd | | | · Surface Water (SDI < 5) | 12–16 gfd | | | Surface Water (SDI < 3) | 13–17 gfd | | | · Well water (SDI < 3) | 13-17 gfd | | | · RO permeate (SDI < I) | 21-30 gfd | | Saturation Limits
(Using Antiscalants) [†] | · Langlier Saturation Index (LSI) | <+1.5 | | | · Stiff and Davis Saturation Index (SDSI) | <+0.5 | | | · CaSO ₄ | 230% saturation | | | · SrSO ₄ | 800% saturation | | | · BaSO ₄ | 6,000% saturation | | | · SiO ₂ | 100% saturation | | | [†] The above saturation limits are typically accepted by
manufacturers. It is the user's responsibility to ensur-
concentration are dosed ahead of the membrane sys
formation anywhere within the membrane system. M
or damaged due to scale formation are not covered | e proper chemical(s) and
tem to prevent scale
lembrane elements fouled | #### **GENERAL HANDLING PROCEDURES** - Elements contained in the boxes must be kept dry at room temperature (7–32°C; 40–95°F) and should not be stored in direct sunlight. If the polyethylene bag is damaged, a new preservative solution (sodium bisulfite) must be added and air-tight sealed to prevent drying and biological growth. - Permeate from the first hour of operation should be discarded to flush out the preservative solution. - Elements should be immersed in a preservative solution during storage, shipping and system shutdowns to prevent biological growth and freezing. The standard storage solution contains 1% by weight sodium bisulfite or sodium metabisulfite (food grade). For short term storage (i.e. one week or less) 1% by weight sodium metabisulfite solution is adequate for preventing biological growth. - Keep elements moist at all times after initial wetting. - · Avoid excessive pressure and flow spikes. - Only use chemicals compatible with the membrane elements and components. Use of such chemicals may void the element limited warranty. - Permeate pressure must always be equal or less than the feed/concentrate pressure. Damage caused by permeate back pressure voids the element limited warranty. 2012 A 04-03-23.2-EN